The Semilinear Heat Equation with a Heaviside Source Term
نویسندگان
چکیده
We consider the initial value problem for the equation u t = u xx +H(u), where H is the Heaviside graph, on a bounded interval with Dirichlet boundary conditions, and discuss existence, regularity and uniqueness of solutions and interfaces .
منابع مشابه
Solving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation
The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...
متن کاملDetermination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions
In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...
متن کاملNon-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations
In this paper we study the Cauchy problem for the semilinear heat and Schrödinger equations, with the nonlinear term f(u) = λ|u|αu. We show that low regularity of f (i.e., α > 0 but small) limits the regularity of any possible solution for a certain class of smooth initial data. We employ two different methods, which yield two different types of results. On the one hand, we consider the semilin...
متن کاملThe existence result of a fuzzy implicit integro-differential equation in semilinear Banach space
In this paper, the existence and uniqueness of the solution of a nonlinear fully fuzzy implicit integro-differential equation arising in the field of fluid mechanics is investigated. First, an equivalency lemma is presented by which the problem understudy is converted to the two different forms of integral equation depending on the kind of differentiability of the solution. Then...
متن کاملApproximate controllability for the semilinear heat equation in R involving gradient terms
We prove the approximate controllability of the semilinear heat equation in RN , when the nonlinear term is globally Lipschitz and depends both on the state u and its spatial gradient u. The approximate controllability is viewed as the limit of a sequence of optimal control problems. In order to avoid the difficulties related to the lack of compactness of the Sobolev embeddings, we work with th...
متن کامل